Desde que se descubrió la electricidad, los inventores se han afanado en buscar formas de almacenarla. Las baterías no tardaron mucho en convertirse en la forma más habitual de conservar la energía por medios químicos, pero, para lograr que fuesen portátiles o pudiesen recargarse, hicieron falta siglos de ajustes en las combinaciones elementales que culminaron en las baterías de las que dependen los dispositivos en la actualidad. Las baterías de iones de litio, verdaderas protagonistas de esta era de dispositivos electrónicos portátiles, parecen abocadas a morir de éxito. El litio resulta caro de extraer y peligroso de manipular, lo que a su vez dificulta su transformación y reciclaje. La demanda sobrepasa los recursos disponibles, caracterizados por un aislamiento geográfico —se hallan en lugares como las zonas despobladas de Australia— que añade complejidad a las cadenas de suministro.
Los datos de la UE reflejan que Europa necesitará hasta sesenta veces más litio en 2050 para satisfacer la demanda de baterías con las que equipar los vehículos eléctricos y almacenar las energías renovables en las que se sustentan los objetivos de emisiones recogidos en el Pacto Verde Europeo.
Sin embargo, esa misma propiedad complicó la selección de otros componentes necesarios para construir el prototipo de batería, como el electrolito por el que fluyen los iones. «En el electrolito se producen muchas interacciones entre los iones de Ca2+ y las moléculas de disolvente, y ello reduce la movilidad del calcio», indica Palacín. Una excelente conductividad en el electrolito implica que los iones pueden moverse más rápido, lo que a su vez aumenta la potencia de la batería.
Para superar este escollo, los investigadores desarrollaron modelos de varias sales y disolventes para hallar un electrolito capaz de crear una capa de pasivación en el electrodo de calcio que facilitase la transferencia de iones. «Parece que, finalmente, todas las sales de electrolitos que funcionan contienen boro», explica. «Utilizamos tetrafluoroborato de calcio disuelto en una mezcla de etileno y carbonato de propileno».
El siguiente paso en el proceso de comercialización del prototipo sería mejorar los métodos empleados para fabricar los electrodos a partir de calcio y desarrollar electrodos positivos adecuados.
Otros elementos abundantes
Juan Lastra, de la Universidad Técnica de Dinamarca, participó en otra iniciativa para desarrollar baterías a partir de elementos comunes. Lastra participó en el proyecto SALBAGE, como parte de un equipo de investigadores que trataban de desarrollar una batería a partir de un ánodo de aluminio y un cátodo de azufre. El aluminio es incluso más abundante que el calcio, pero incorporarlo a una batería plantea dificultades similares.
“Todos estos iones multivalentes (Ca2+, Al3+) son muy reactivos, y es difícil hacer que se muevan por sí solos”, explica Lastra. En las baterías de aluminio-azufre, el aluminio se encuentra siempre en forma de aluminio y algunos iones de cloruro, AlCl4-. “Se produce un proceso de conversión en el que este aluminio se desacopla gradualmente del grupo AlCl4 y reacciona con el azufre en el lado del cátodo”, señala Lastra, a lo que añade que “se parece más a la batería de plomo-ácido de un coche que a la de iones de litio de un teléfono móvil”.
Baterías flexibles
Para optimizar la transferencia de estos iones, el equipo se propuso crear y utilizar un nuevo tipo de electrolito denominado disolvente eutéctico profundo. Este consiste en unir dos sólidos para que se conviertan en un líquido. “Funciona igual que cuando mezclas sal con hielo y forman un líquido —salmuera— incluso a temperaturas bajo cero”, explica Lastra.
Con ayuda de un superordenador, crearon un modelo para combinar una sal de cloruro de aluminio con urea, un compuesto presente en la orina, con el objetivo de hallar la mejor proporción de mezcla para desarrollar un electrolito líquido: “Modelizamos cerca de 300 átomos, para un tiempo de simulación no superior a un nanosegundo, pero simular un nanosegundo de este líquido lleva medio año de trabajo”. Este proceso se dilata tanto porque los investigadores deben analizar un millón de pasos por nanosegundo para simular adecuadamente todas las posibles reacciones.
Una vez identificada la proporción adecuada, los investigadores del proyecto en España descubrieron que podían convertir el electrolito en un gel añadiendo polímeros a la solución. Según el investigador, “resulta muy útil disponer de un gel, por motivos de seguridad y factor de forma. Si puedes utilizar gel para desarrollar una batería, esta será flexible y podrá doblarse”.
Emplear un gel en lugar de un líquido también aporta beneficios en términos de seguridad, ya que se reducen las posibilidades de que se produzcan fugas. A ello hay que añadir que los materiales son todos seguros y económicos: “El aluminio, el azufre, el propio electrolito y la urea son muy, muy baratos. Incluso el polímero lo es”.
La seguridad que ofrecen los componentes puede ser un elemento clave para evitar su futura obsolescencia. Una de las principales desventajas de las baterías de iones de litio es que contienen elementos tóxicos y escasos, lo que dificulta mucho su integración en la economía circular. “Este tipo de tecnología puede ser una opción muy competitiva para desarrollar aplicaciones estáticas, como las empleadas para almacenar energía de un parque eólico o solar”, declara Lastra.
La investigación descrita en este artículo se financió con fondos de la UE. Artículo publicado originalmente en Horizon, la Revista de Investigación e Innovación de la Unión Europea.
Fuente:
Bilby, E. H. (2022, 15 febrero). Un equipo de investigadores diseña un prototipo de baterÃa que usa calcio en lugar de litio. El PaÃs. Recuperado 15 de febrero de 2022, de https://elpais.com/tecnologia/2022-02-15/un-equipo-de-investigadores-disena-un-prototipo-de-bateria-que-usa-calcio-en-lugar-de-litio.html